Homodyne detection of coherence and phase shift of a quantum dot in a cavity.
نویسندگان
چکیده
A homodyne measurement technique is demonstrated that enables direct observation of the coherence and phase of light that passed through a coupled quantum dot (QD)-microcavity system, which in turn enables clear identification of coherent and incoherent QD transitions. As an example, we study the effect of power-induced decoherence, where the QD transition saturates and incoherent emission from the excited state dominates at higher power. Further, we show that the same technique allows measurement of the quantum phase shift induced by a single QD in the cavity, which is strongly enhanced by cavity quantum electrodynamics effects.
منابع مشابه
Linear and nonlinear optical properties of a modified Gaussian quantum dot: pressure, temperature and impurity effect
In this paper, the effect of pressure, temperature and impurity on the energylevels, binding energy, linear and nonlinear optical properties of a modified Gaussianquantum dot are studied. In this regard, the finite element method is employed to solvethe single electron Schrodinger equation in the effective mass approximation with andwithout impurity at the center of the dot. In addition, the en...
متن کاملImproved Detection of Differential Phase Shift Keying through Multi- Symbol Phase Estimation
We report an improved self-homodyne detection scheme for differential phase-shift-keying that achieves close to homodyne performance and effectively reduces the influence of nonlinear phase noise, resulting in a 1.3dB sensitivity improvement over self-homodyne detection.
متن کاملIntroducing New Structures for D-Type Latch and Flip-Flop in Quantum-Dot Cellular Automata Technology and its Use in Phase-Frequency Detector, Frequency Divider and Counter Circuits
Quantum-dot cellular automata (QCA) technology is an alternative to overcoming the constraints of CMOS technology. In this paper, a new structure for D-type latch is presented in QCA technology with set and reset terminals. The proposed structure, despite having the set and reset terminals, has only 35 quantum cells, a delay equal to half a cycle of clocks and an occupied area of 39204 nm2. T...
متن کاملEnergy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کاملEnergy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 40 13 شماره
صفحات -
تاریخ انتشار 2015